Energy Efficiency Policy Approaches

Roya Stanley - Director November 13, 2008

The Time is Now

Iowa Energy Imports, 2005

■ Imported Energy Sources

■ Domestic Energy Sources*

- Market fluctuation creates instability
 - Heating oil prices up 117% from 5 yrs ago
 - Propane prices up 86% from 5 yrs ago
 - FY08: largest fluctuations in oil prices

Cost of Coal

- Increasing costs of coal
- Average 500 MW coalfired power plant emissions ~ 3 million tons of CO2/yr
- If implementing carbon charge for coal, low estimates = \$7/ton in 2010
 - Increasing at 5% thereafter
- Transmission upgrades vary greatly
 - Bloomberg News estimates
 \$75 billion investment

Consumer Viewpoint

- Purchase energy for what it does
- Source of energy is unimportant
- Cost: most important issue for many consumers

Source: ACEEE estimates adapted from the U.S. EPA and the Vanguard Group

Why Energy Efficiency Programs

- EE is a First Fuel but not a Silver Bullet
- Low risk, high return
 - EE costs less than generation from new power plants by about ½. (EIA 2006)
 - Sizeable savings in 3 years or less
- Indicates Productivity
 - More output for less input

Investment/Technical Potential

- EPA National Energy Plan (2006):
 - Economic potential of more than 20% savings in total electric demand by 2025
 - 50% or greater reduction in natural gas demand growth
 - Potential for nearly \$20 billion in energy savings over 10-15 yrs
 - Defer need for 20,000 MW of new generation

Energy Efficiency Potential

Table 1. Summary of Results from Recent Technical, Economic and Achievable

Region	Year	Fuel	1	Potential (%)		
			# Years	Technical	Economic	Achievable
California	2003	Electric	10	18%	13%	10%
Massachusetts	2001	Electric	5		24%	
New York	2003	Electric	20	36%	27%	
Oregon	2003	Electric	10	31%		
Puget	2003	Electric	20	35%	19%	11%
Southwest	2002	Electric	17			33%
Vermont	2003	Electric	10			31%
U.S.	2000	Electric	20			24%
Median		Electric	1	33%	21.5%	24%
California	2003	Gas	10		21%	10%
Oregon	2003	Gas	10	47%	35%	
Puger	2003	Gas	20	40%	13%	9%
Utali	2004	Gas	10	41%	22%	
U.S.	2000	Gas	20			8%
Median		Gas		41%	22%	9%

Note: This table only includes the longest time periods and more aggressive scenarios covered in each study.

EE Policy Impacts

- Have short-term and long-term impacts on:
 - Economy
 - •j ob creation
 - •se curity
 - Environment
 - •e missions reductions
 - Energy security
 - •i mport reductions

Michael Jordan Approach

- Elements to MJ's success
 - Game plan
 - Follow-through
 - Teamwork

Energy Independence Policy Recommendations

- Create energy efficiency portfolio standard (EEPS)
- · Promote smart growth
- Coordinate core energy efficiency programs
- Make energy efficiency a priority over new generation

Energy Efficiency Portfolio Standard

- Encourages efficient:
 - Generation
 - Transmission
 - Usage

Promotion of Smart Growth

- By 2020: population size/density and transportation patterns will change
- Creates the need for smart growth techniques
 - Reduce vehicle miles traveled (VMTs)
 - Encourage urban area density

Projections from Woods & Poole Economics, inc., 2004 (lowe State University presentation)

Smart Growth Techniques

- Planning is Key
 - Compact growth
 - Transit-oriented development
 - Integrated transit networks
 - Mixed use development
- · Low or no incremental cost

GHGs avoided by decreased VMTs

Vehicle	CO2 emissions 10,000 miles/yr	CO2 emissions 8,000 miles/yr	
Chevy Silverado	13,043 lbs/yr	10,434 lbs/yr	
Ford Taurus	9,316 lbs/yr	7,453 lbs/yr	

- Simplification needed in a confusing marketplace
- Set standards for industry-wide programs
- · State leadership
- Creates infrastructure
 - Training
 - Business availability

Make Energy Efficiency a Priority

- Require Iowa utilities to do least cost planning for new generation
 - Need to demonstrate pursuit of all efficiency resources before new generation

Questions & Comments Are Welcomed

